Proteção contra incêndios de estruturas de betão

A estabilidade do fogo das estruturas e suportes de betão armado é assegurada através da limitação do aumento da temperatura no aço e na estrutura em anexo no betão.

Os métodos de previsão para calcular o comportamento das estruturas de betão na presença de incêndio são descritos no Eurocode NF EN 1992-1-2. Especificam que os elementos estruturais de betão são resistentes ao fogo durante 2 horas quando a sua espessura mínima é de 12 cm e o revestimento no aço tem 4 cm de espessura.

Em quase todos os edifícios, o revestimento é normalmente de 2 cm. É por esta razão que elementos concretos requerem proteção contra incêndios que compensa esta diferença de espessura.

Lajes com nervuras

As zonas inferiors dos pavimentos de betão estão protegidas exatamente da mesma forma que outros elementos estruturais, com os mesmos produtos resistentes ao fogo.

Lajes de chão

As parte de baixo das lajes de betão ou cerâmica com uma parte inferior ranhurada estão protegidas da mesma forma que outros elementos estruturais com os mesmos produtos de proteção.

Para uma laje de pavimento cerâmico protegida com FIBROFEU®, é necessária uma folha de metal expandido.

Projiso oferece múltiplas soluções de proteção contra incêndios de estrutura de betão fibroso feitos a partir de lã mineral (FIBREXPAN®, FIBRO-FEU®).

Um produto é selecionado dependendo de vários fatores específicos do estaleiro de construção.

Excerto de NF EN 1992-1-2

Lajes maciças

Duração <mark>da re</mark> sist <mark>ência ao</mark> fogo	60 min	90 min	120 min	180 min	240 min
Espessu <mark>ra d</mark> a laj <mark>e (</mark> mm)	80	100	120	150	175
Revestimento em aço (mm)	20	30	40	55	65

Feixes retangulares (vigas sobre suportes individuais)

Duração da resistência ao fogo	60 min	90 min	120 min	180 min	240 min
Espessura do feixe (mm)	120	150	200	240	280
Revestimento em aço (mm)	40	55	65	80	90

Feixes retangulares (vigas contínuas)

Duração da resistência ao fogo	60 min 90 min		120 min	180 min	240 min	
Espessura do feixe (mm)	120	150	200	240	280	
Revestimento em aço (mm)	25	35	45	60	75	

Paredes de suporte de carga (expostas de um lado)

Duração da resistência ao fogo	60 min 90 min		120 min	180 min	240 min	
Espessura da parede (mm)	130	140	160	210	270	
Revestimento em aço (mm)	10	25	35	50	60	

As tabelas acima especificam as espessuras mínimas das estruturas e dos revestimentos de aço para garantir que têm a resistance necessária para disparar.

Quando as espessuras das estruturas de betão são insuficientes para obter a resistência ao fogo desejada, a aplicação de um produto pulverizador pode ser utilizada para fornecer a espessura em falta.

Proteção contra incêndios de estruturas de aço

Temperatura crítica

Os aumentos de temperatura alteram significativamente as propriedades mecânicas do aço.

A 400 °C, a força de rendimento do aço é reduzida para 60% do seu valor inicial. Foi provado que uma estrutura de aço submetida ao calor já não pode desempenhar as suas funções de suporte de carga após um certo período de tempo, e entrará em colapso. A temperatura a que isto ocorre chama-se temperatura crítica.

A temperatura crítica mudará dependendo do peso da carga inicial e dependerá do nível admissível de stress e da natureza deste stress.

Para efeitos de simplificação, podem ser utilizados os seguintes valores mínimos críticos de temperatura, com base no Eurocódigo 1993-1-2:

- 500 °C para elementos ou elementos comprimidos sujeitos a flexão e compressão axial.

- 540 °C para feixes isostáticos e elementos tensos.
- 570 °C para feixes hiperstáticos.

Fator de secção

O fator de secção S/V expressa a relação entre a superfície exposta ao fluxo térmico S [m2] e o volume de um elemento por unidade de comprimento [m3]. O seu valor influencia consideravelmente o comportamento do elemento ral estruturado quando exposto ao fogo.

Um elemento com um quociente S/V [m-1] com um baixo valor aquecerá muito mais lentamente do que um elemento com um fator de secção alta. Será, portanto, mais resistente ao fogo.

A tabela a seguir fornece os fatores de secção para as secções metálicas geralmente utilizadas para feixes expostos em 3 locais e postes expostos em 4 lados.

Para outros tipos, contacte o departamento técnico do Projiso.

Fatores de secção das secções metálicas geralmente utilizadas (em m-1)

Visco metal avacate. Em 2 Lodos					Vigas metal exposto Em 4 Lados						
<u>vigas m</u>	etal exposto		Lados			vigas m					
	HEA	Ter	IPE	IPN	UAP		HEA	Ter	IPE	IPN	UAP
80		<u>- </u>	371	346	267	80		-	431	402	309
100	218	180	336	302	253	100	266	219	390	350	291
120	221	167	311	269	-	120	268	202	360	310	-
130	-	-	-		236	130	-	-	-	- /	268
140	209	155	291	239	-/	140_	253	188	336	275	-
150	- /	- //		- //	210	150	- /	- /	-	-	239
160	190	140	269	220	-	160	231	170	310	253	-
175	-/	-/		-	202	175	-/	-	<i>-</i>	-	228
180	186	131	254	200	-	180	226	158	293	230	-
200	175	122	235	185	191	200	212	148	269	212	214
220	162	116	221	171	183	220	196	140	254	196	205
240	148	108	205	161	-	240	179	131	236	184	- /
250	-	-	-		169	250	-	-	-	-	188
260	141	105	-	149	-	260	171	127	-	170	-
270	-	-	198	-	162	270	-	-	227	-	180
280	136	102	-	139	-	280	165	124	-	159	, -
300	127	96	188	131	151	300	153	116	216	150	168
320	118	92	-	124	-	320	142	110	-	141	-
330	-	-	175	-	-	330	-	-	200	-	-
340	112	89	-	117	-	340	135	106	-	133	-
360	108	86	163	110		360	129	103	186	125	-
380	-	-	-	105	-	380	-	-	-	119	-
400	102	83	153	100	-	400	121	98	174	113	-
425	-	-	-	95		425	-	-	-	107	-
450	97	78	144	90		450	113	92	163	101	-
475	-	-	-	85	-	475	-	-	-	96	-
500	92	77	133	81	-	500	107	89	150	91	-
550	91	76	125	76		550	105	88	141	85	-

Princípio do trabalho

O revestimento fibroso em torno de uma estrutura metálica retarda a velocidade de aquecimento do aço, melhorando assim o seu comportamento quando exposto ao fogo.

A espessura do revestimento a instalar variará consoante:

- O tipo de material protetor
- O fator de secção da secção para proteger
- A temperatura crítica da secção para proteger

Revestimento oferecido por Projiso

Um revestimento fibroso seco feito de l\u00e4 mineral, FIBROFEU\u00ace

Instalação

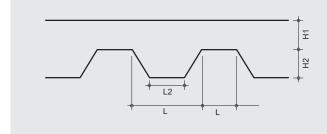
- A base não é tratada ou aço enferrujado; enquanto os nossos produtos não aumentam a corrosão de aço, uma base tratada com um primário alkyd ou epoxy é recomendada para resistência a longo prazo à corrosão.
- A base deve estar limpa, seca, livre de pó, resíduos de rolamento, ferrugem, óleo ou qualquer outro contaminante que possa afetar a aderência.
- Deve ser aplicado um primário adequado antes da aplicação do revestimento de proteção contra incêndios.

Nas páginas seguintes, encontrará exemplos de espessuras de instalação.

Proteção contra incêndios de pavimentos de betão com bandejas estruturais de pavimento em aço

As questões encontradas na proteção contra incêndios de pavimentos de betão com tabuleiros estruturais de pavimentos em aço não são fundamentalmente diferentes das apresentadas pela proteção dos pavimentos de betão armado.

Com efeito, isto exige também que o aço, que é visível neste caso, seja impedido de aumentar a temperatura.


Projiso oferece uma solução resistente ao fogo:

Um revestimento fibroso feito de l\u00e4 mineral

A solução para a proteção de lajes mistas com tabuleiros estruturais de pavimento em aço oferecidos pela Projiso pode ser utilizada desde que estejam reunidas as seguintes condições:

- · Bandejas estruturais de pavimento em aço com aviso técnico atualmente válido
- Espessura estrutural da chapa de bandeja de aço maior ou igual a 0,75 mm
- Largura da calha de ondulação (L2) dos tabuleiros de pavimentos de aço estrutural inferiores ou iguais a 187 mm
- Brasão de ondulação (H2) dos tabuleiros de pavimentos de aço estrutural inferiores ou iguais a 87 mm
- Aplica-se a todas as lajes mistas com tabuleiros de aço estrutural trapezoidais com uma espessura eficaz* superior ou igual a 73 mm
- Aplica-se a todas as lajes mistas com bandejas de aço estrutural com uma espessura eficaz* superior ou igual a 80 mm

